Карл Фридрих Гаусс (нем.Carl Friedrich Gauß) - выдающийся немецкий математик, астроном и физик, считается одним из величайших математиков всех времён.
Карл Фридрих Гаусс родился 30 апреля 1777 году в герцогстве Брауншвейг. Дед Гаусса был бедным крестьянином, отец - садовником, каменщиком, смотрителем каналов. У Гаусса в раннем возрасте проявились необычайные способности к математике. Однажды, при расчетах своего отца, его трехлетний сын заметил ошибку в вычислениях. Расчет был проверен, и число, указанное мальчиком было верно. С учителем маленькому Карлу повезло: М.Бартельс оценил исключительный талант юного Гаусса и сумел выхлопотать ему стипендию от герцога Брауншвейгского.
Это помогло Гауссу закончить колледж, где он изучал Ньютона, Эйлера, Лагранжа. Уже там Гаус сделал несколько открытий в высшей математике, в том числе доказал закон взаимности квадратичных вычетов. Лежандр, правда, открыл этот важнейший закон раньше, но строго доказать не сумел, Эйлеру это также не удалось.
С 1795 по 1798 год Гаусс учился в Гёттингенском университете. Это наиболее плодотворный период в жизни Гаусса. В 1796 г. Карл Фридрих Гаусс доказал возможность построения с помощью циркуля и линейки правильного семнадцатиугольника. Более того, он разрешил проблему построения правильных многоугольников до конца и нашёл критерий возможности построения правильного n-угольника с помощью циркуля и линейки: если n — простое число, то оно должно быть вида n=2^{2^k}+1 (числом Ферма). Этим открытием Гаусс очень дорожил и завещал изобразить на его могиле правильный 17-угольник, вписанный в круг.
30 марта 1796 года, в день, когда был построен правильный семнадцатиугольник, начинается дневник Гаусса - летопись его замечательных открытий. Следующая запись в дневнике появилась уже 8 апреля. В ней сообщалось о доказательстве теоремы квадратичного закона взаимности, которую он назвал «золотой». Два открытия Гаусс сделал на протяжении всего десяти дней, за месяц до того, как ему исполнилось 19 лет.
С 1799 года Гаусс - приват-доцент Брауншвейгского университета. Герцог продолжал опекать молодого гения. Он оплатил издание его докторской диссертации (1799) и пожаловал неплохую стипендию. После 1801 года Гаусс, не порывая с теорией чисел, расширил круг своих интересов, включив в него и естественные науки.
Мировую известность Карл Гаусс приобрел после разработки метода вычисления эллиптической орбиты планеты по трем наблюдениям. Применение этого метода к малой планете Церера дало возможность вновь найти ее на небе после того, как она была утеряна.
В ночь с 31 декабря на 1 января известный немецкий астроном Ольберс, пользуясь данными Гаусса, обнаружил планету, которую назвали Церерой. В марте 1802 была открыта еще одна аналогичная планета – Паллада, и Гаусс тут же вычислил ее орбиту.
Свои методы вычисления орбит Карл Гаусс изложил в знаменитой Теории движения небесных тел (лат.Theoria motus corporum coelestium, 1809). В книге описан использованный им метод наименьших квадратов, и по сей день остающийся одним из самых распространенных методов обработки экспериментальных данных.
В 1806 году от раны, полученной на войне с Наполеоном, умирает его великодушный покровитель-герцог Брауншвейгский. Несколько стран наперебой приглашали Гаусса на службу. По рекомендации Александра фон Гумбольдта Гаусса назначили профессором в Гёттингене и директором Гёттингенской обсерватории. Эту должность он занимал до самой смерти.
С именем Гаусса связаны фундаментальные исследования почти во всех основных областях математики: алгебре, математическом анализе, теории функций комплексного переменного, дифференциальной и неевклидовой геометрии, теории вероятностей, а также в астрономии, геодезии и механике.
В 1809 году вышел в свет новый шедевр Гаусса - «Теория движения небесных тел», где изложена каноническая теория учёта возмущений орбит.
В 1810 году Гаусс получил премию Парижской Академии наук и золотую медаль Лондонского Королевского общества, был избран в несколько академий. Знаменитую комету 1812 года всюду наблюдали, пользуясь вычислениями Гаусса. В 1828 году вышел в свет основной геометрический мемуар Гаусса «Общие исследования о кривых поверхностях». Мемуар посвящен внутренней геометрии поверхности, т. е. тому, что связано со структурой самой этой поверхности, а не с ее положением в пространстве.
Исследования в области физики, которыми Гаусс занимался с начала 1830-х годов, относятся к разным разделам этой науки. В 1832 он создал абсолютную систему мер, введя три основные единицы: 1 сек, 1 мм и 1 кг. В 1833 совместно с В.Вебером построил первый в Германии электромагнитный телеграф, связывавший обсерваторию и физический институт в Гёттингене, выполнил большую экспериментальную работу по земному магнетизму, изобрел униполярный магнитометр, а затем бифилярный (также совместно с В.Вебером), создал основы теории потенциала, в частности сформулировал основную теорему электростатики (теорема Гаусса – Остроградского). В 1840 разработал теорию построения изображений в сложных оптических системах. В 1835 создал магнитную обсерваторию при Гёттингенской астрономической обсерватории.
В каждой научной области его глубина проникновения в материал, смелость мысли и значительность результата были поражающими. Гаусса называли «королем математиков». Он открыл кольцо целых комплексных гауссовых чисел, создал для них теорию делимости и с их помощью решил немало алгебраических проблем.
Умер Гаусс 23 февраля 1855 года в Гёттингене. Современники вспоминают Гаусса как жизнерадостного, дружелюбного человека, с отличным чувством юмора. В честь Гаусса названы: кратер на Луне, малая планета № 1001 (Gaussia), единица измерения магнитной индукции в системе СГС, вулкан Гауссберг в Антарктиде.